
UDC 539.3 

ON SOME DIRECT METHODS AND THE EXISTENCE OF SOLUTION IN THE 

NONLINEAR THEORY OF ELASTIC NONSHALLOW SHELLS OF REVOLUTION 

PMM Vol. 38, N’2, 1974, pp. 339-348 
I. I. VOROVICH, L. P. LEBEDEV and SH. M. SHLAFMAN 

(Rostov-on-Don) 

(Received November 28, 1972) 

The existence of a generalized solution is proved by the methods of Cl] and the 
convergence of the approximate Ritz and Bubnov-Galerkin methods in the prob- 

lem of the equilibrium of an elastic nonshallow shell whose middle surface being 

part of a surface of revolution is given a foundation for an arbitrary load and a 
rigidly supported edge. In the particular case of axisymmetric strain of a shell 

of revolution, an important topological characteristic of the problem, the rotation 
of the vector field, is calculated. 

1. Fundamental relationships. The following version of the relationships 
of nonlinear theory of nonshallow shells is considered, which can be obtained from the 

relationships for mean bending : 

Here Tij are the tangential stress resultants, cij are the tension and shear strains,Mij 
are the bending moments, Xij is the change in curvature jj,-~1 of the shell middle sur- 

face sZ’ ; qi are the angles of rotation of the coordinate lines ui; AiX, 2 C = 0 are 
coefficients of the first quadratic form of the surface S” ; ul, up, w are the displace- 
ments of points of the shell middle surface S”; the subscript ai denotes differentiation 

with respect to the coordinate ai; 21~ is the shell thickness, and Elijh,, Dijkl are elas- 

tic shell characteristics. 
This version of the theory of nonshallow shells has already been examined in [2, 31, 

however, an erroneous proof of the fundamental a pr i or i estimate of the solution of 
the problem was presented therein. The proof of the existence of a solution is cgrried 

out herein by a method analogous to that in [ 11. 
Let the following conditions be satisfied : 

1) The shell middle surface S* is part of a surface of revolution, and the homeo- 

morphic mapping of its meridian ~1 x const. onto some segment 10, [I] is carried 
out by the function I^ (u,) E CW (,J, /,); 
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2) The domain Q occupied by the shell planform is the finite sum of bounded star-shaped 
domains, if the shell is closed (see Fig. l), then the domain included between the lines 

z1 = 0 and a, = Z?,z is taken as Q ; 
3) The boundary r of the domain Q 

consists of a finite number of closed contours 

of the Liapunov class ~7, (m, 0) ( * ) ; 
4) The inequalities 

0 < ml x< Ai, h, I Ri I< m2 

are valid everywhere in the domain Q (here 
and henceforth Mu > 0 are some positive 
constants) ; 

5, Eiikl are piecewise-continuous 
functions in 9 , where the inequality 

?tta&ijeij < Eij,,Eije,l < maEijEij 

Fig. 1 
is satisfied in Q for all symmetric tensors 

“ij l 

Condition (4) permits elimination of components of the displacement vector ZZ~, u2 
from all the relationships (1.1) by using the relationship 

rli = RiAi-lw,. - Xi+i, i=1,2 

This substitution is considered to be carried out everywhere without any additional sti- 

pulations. 
The Lagrange principle determines the shell equilibrium equation 

\’ irij (?ri[) aE,j + Af,jh!,j> fi,A, dCY.1 dU. = 
ri 

2 (1.2) 

s * (F, (R,.i;‘Gw,, - R,W,) + F2 (R&%w,~ - R26~2) + 
n 

F,6w) AlA da, da, 

if the shell edge is rigidly fixed [clamped], i. e. 

$i I!? = O7 wlp = 0, w+ = 0, i=i,2 (1.3) 

Here ‘; are components of the external load vector ; the variational sign ?I means that 

the “possible” displacement 60 (Qr, fig,, a~), must be substituted in the correspond- 

ing expression in place of the vector function o ($,, $a, w) , where 

6Fij z 6eij _t l/2 ($iSlpj I_ t]!jS$i) 

A system of three differential equations in the vector function o (q:,, I!‘~, W) can be 
obtained from (1.2) by a method standard for calculus of variations. This system is equi- 
valent to the ordinary system of nonshallow shell equilibrium equations in the displace- 

ments ut, up, w 

*) Editorial Note. Cyrillic symbol A derives from Liapunov ( .%rnyrro~ ) . 
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The following scalar product 

(1.4) 

is introduced. 
ii 

Definition 1.1. The space 11 is the closure of the set C of vector functions 

0 ($1, $2, 4 E cyq x W(Q) x C(2)(Q) satisfying the boundary conditions 

(1.3), in the form corresponding to the scalar product (1.4). In the case of a closed shell 
(see Condition (2)) still 2n- periodicity in the variable a, must be required of these 

functions. 
As in [4], the following lemma can be proved. 

Lemma 1.1. Let Conditions (1) - (5) be satisfied. In this case the space H is a 
subspace of 

IV TT’,I (cl) 1.: 11’,1 (a) :\: It._’ (52) 
where the inequality 

0 < irl .5 -‘> 1) U [(H /I w jj$ *y: 1116 

is valid for an arbitrary element 0 E 11 , with the constants ?lza. ?/ls not dependent on 

the selection of o E H. Moreover, the space formed by the closure of the subset of 

vector functions a E C of the form a = ($r, lb,, 0) in the norm corresponding to the 

scalar product in HI 
(a. 6a)H, E \ llIijdxijA,A,da, da2 

is a subspace \V, = Wzl (!A) x W’21 (Sz), where the norms of 

valent in the space H, . 
Lemma 1.1 shows that the corresponding Sobolev’s imbedding 

for the space H, H, . 

11, and \\‘r are equi- 

theorems [S] are valid 

2, Formulation of the problem. As in [6], the concept of a generalized 

solution is introduced. 
Definition 2.1. The generalized solution of the problem of equilibrium of an 

elastic nonshallow shell with rigidly fixed edge is the vector function o (Qr, $z, W) e 

H such that for an arbitrary vector function 60 E 11 the integral relationship (1.2) 

is satisfied. 
By using the Holder inequality and Lemma 1.1 it can be shown that all the terms of 

(1.2) have meaning for such a definition of the generalized solution, and moreover, each 
is a continuous linear functional in the variable 6~ in the space II if there is compli- 
ance with the condition 

6) F,, F, E L, (Q), p > I, J’s z L (Q) 

On the basis of the Riesz theorem about the representation of a continuous linear func- 
tional in Hilbert space, (1.2) can be written as an opergtor equation in the space 11 

0 r= 4;61 

Considering the variation of the energy functional J, it can be shown that 
I - G = gradrr J 
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It follows from the explicite form of the functional J, and Lemma 1.1 that .J, is wealr- 
ly continuous, and in turn, this implies the complete contin~ty of the operator G by the 

E. S. Tsitlanadze theorem. 
The existence of a generalized solution will have been proved if the existence of cri- 

tical points of the functional J is shown (see [ 11). 

Lemma 2.1. Let Conditions (1) -(5) be satisfied, and let there be a sequence@, 
weakly convergent to the element o,in the space H such that J, (0,) --+ 0. In this 
case 0, = 0. Here J, (0) is a part of the functional J homogeneous in & to the 

fourth power for the mapping of the unit sphere S(o* E S: /i o 11” = 41 on the “el- 
lipsoid” c (R) defined by the relations 

w = R2w*, jam ;t; &@, i == i, 2, o* E As, Q E c (R) 

Without limiting the generality, it can be considered that w,, E c. 
There results from the form of the functional J, (0) and Condition (5) that the quan- 

should tend to zero in L, (Q) and therefore also in L (9) . Multiplying the second of 
the relations (2,l) by A,A,R,-r, inte~ating over the domain $2 and relying on the 

Gauss-Coda& relationships 

(A$ll,*),* + (A;r.4& + &izR;Q,1 = 0 

(AlR;‘), z -- A,, R-1 I 2 (1 = 2) 

we can obtain by elementary manipulation 

Hence it follows (since Asa, KZ 0) that 

I 
’ $&dr,daz + 0 

R 

i.e. qzO = 0. There results from Lemma 1.1 and the second of the equalities (2.1) 

that 8, 9 0 in the space L, (a) 
0, - -4;’ (H9W,za*.~;1)G* +- &?,r I (2.2) 

Just as had been done in proving the imbedding theorems in 141, it oan be shown that 

strong convergence of the sequences u?,, wtial, zffu,lapzl to zero in the space L, (Q) follows 

from the relationship (2.2). i, e. IU~ = 0 . Finally, $I* = 0 results from the first of 

the relationships (2. l), which terminates the proof. 
Lemma 2.2. If Conditions (1) - (6) are satisfied, then for sufficiently large R > 

0 the following estimate 
J > I?~T R2, w > 0 (2.3) 

is valid on the ellipsoids C(R) . The proof of the inequalities (2.3) is carried out as in 
(43. The original &’ of the ellipsoid c (R; is separated into three parts, St, S, Ss. 
For a sufficiently small, but completely definite E > 0 , the functional J, (co*) > m8v 

m8 > 0, on S1 :o* (a*, zu*) E S,: II a* 11 H,S < F$ and the estimate (2.3) is satisfied 
on this part of C (RI for the mapping of S1 on U (tl) since the remaining terms in the 
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functional J have powers of R not greater than the third, 
The set S, 

n 
is separated out of the remaining part of the sphere S \ S1 . 

It follows from the form of the functional J that the estimate (2.3) is satisfied with 
the constant m7 == 9, t: on the mapping S,. The set S3 = S \ (S, U S,) contains no 
weak zero. There results from Lemma $1 that the fictional .I, Co*! is strictly posi- 
tive on S, , from which the estimate (2.3) on the mapping S.? in C (Jf) follows, as 
above. 

For R > 0 the ellipsoid c (R) is the boundary of a connected convex set which 
is star-shaped relative to zero in the space H. There results from Lemma 2.2 that 
there is a minimum point within some ellipsoid C (fi) with a sufficiently large diame- 

ter R . 
Indeed, let d, be the exact lower bound of the function J in the space H. There 

results from Lemma 2.2 that d, > - 03. Every minimizing functional J of the sequ- 
ence w, evidently lies in the set M defined by the inequality J 0 0 ’ -’ ms. Because 

of the estimate (2.3) this set lies in some ellipsoid which is a bounded set in H I and 
therefore, the set (0,) is weakly compact, Since the functiona J, is weakly continu- 
ous, then by repeating the discussion in [l] word for word, it can be obtained that the set 

{w,) is strongly compact and each weak limit w,) of the sequence Qs simultaneously 
the strong limit. Therefore 

J (0.)) -: lim J (On) == do 

this terminates the proof of the existence of critical points of the functional J. 

The following theorem is therefore valid. 

Theorem 2.1. Let Conditions (1) -(6) mentioned above be satisfied. In this case I 
there exists at least one generalized solution of the problem in the sense indicated in 

Definition 2.1. 

3. Convttgenca of the Bubnov-Galsrkfn method, The foundation 
of the Bubnov~alerkin method in nonshallow shell theory is carried out by the same 

scheme as for shallow shells fl]. 
Let Xl be a complete orthonormaiized system of vector functions in the space H . The 

generalized solution of the problem is sought approximately by the Ritz method in the 
form ?l 

(3.1) 

as the minimal value of the functional d in an n-dimensional manifoid &f,, extended 
over the vectors xr, I = 1, - . ., rt from the following system of algebraic equations : 

+J(%)=o, l=i,...,n (3.2) 
ni 

It can be shown because of the estimate (2.3) that the inequality 

is valid for sufficiently large values of h! > 0 in ellipsoids C, (R) in the n-dimen- 

sional space of coefficients qnl obtained from the ellipsoids C(R) by extraction of 
points belonging to the set II;, . Therefore the functional J considered in the set ill,, 
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takes on the minimal value within an ellipsoid c, (R). There hence results that the 
system (3.2) has at least one real solution within the ellipsoid C,(R) for sufficiently 
large R > 0. This same solution also lies within the ellipsoid C (A) of the space II 

independently of n, i. e. the sequence of approximate Ritz solutions is weakly compact 

in the space H. Strong compactness of the sequence of approximate Ritz solutions can 

be shown analogously [l]. 
The system of equations of the Bubnov-Galerkin method are constructed in a rl-th 

approximation as follows: in place of the vector function o in (1.2), (3.1) is substituted 

and the n vector functions of the basis Xl, 1 = 1, - . . , n are substituted successively 
in place of &e. The following theorem results from the explicite form of the functional 
J and its properties, analogously to Cl]. 

Theorem 3.1. Let all the conditions of Theorem 2.1 be satisfied and let Xl be 
a complete orthonormal system of vector functions in the space 11. If the generalized 
solution of the problem is sought approximately by the Ritz or Bubnov-Galerkin methods, 

then the following assertions are valid: 
1) The same system of algebraic equations, having at least one real solution, is 

always obtained for the coefficients qnl when both methods are used ; 
2) The set of approximate solutions o,,included in a sphere of the space H of 

sufficiently large radius, is infinite, strongly compact, and contains a sequence minimi- 

zing J; 
3) Each limit point of the set of approximate solutions a), is the generalized solu- 

tion of the problem in the sense of Definition 2.1. 

Note. All the theorems obtained above remain valid if only Asa, s 0 is assumed 
instead of the condition that S* is part of a surface of revolution. 

4. Axicymmetric problem. The axisymmetric case of shell deformation is 
presented here for two reasons : firstly, the existence of an axisymmetric solution in the 
case of deformation of a shell of revolution by an axisymmetric load does not follow 
from Theorem 2.1, and secondly, the topological characteristic of the problem, the rota- 
tion of a vector field, is calculated in this case. 

The middle surface &‘* of an axisymmetrically deformable isotropic homogeneous 
elastic shell is a part of a surface of revolution enclosed between the two parallels a, = 
a and cc? = b. The fundamental relationships (1.1) become in this case 

T,, (F/,,) -: E, (ell -t_ ve,,), T,, -; 0 (4.1) 

ICI,, = D (xl1 + ~4, Iv,, -z 0 (1 2’) 

aij z pij 

+ ‘:‘z $i*j 

Fll = nip (A,A,)-' (B,A2-'wp -X2$) + R1-l~ 

F 2? : _ A,-‘(R,A, -l zoo - R&) p + wR,-’ + 1/‘s$2 

F12 = t’?l z= till = 3c12 = xc1 mu 0, I#)? Lm- ljl 

x11 ~ - ill, (AIAJ1$, %? -= - A,-I*, 

El = 2hE (1 - Y?)-l, D ~~ “,‘,h3 E (1 - v?)-l? 0 < Y < I,/?. 

Here the coordinate a, is renamed p, E is the Young’s modulus, and v is the Poisson’s 
ratio. All the functions in (4.1) depend only on the coordinate p. 
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Equation (1,Z) can be rewritten in this case as two equations in the functions 9 and w 
h 

s ~~~jj~~~j~~~~~ - T,,A,$?& - T,,A1(~~~~1)~ + 
(h21 

<I 

Here 
y11 = A, p (AlA2”)-1 R&5fJ + wl2l-l 

yz2 =T &-I (NzwpA2-‘) + wR,- 

The boundary conditions (X,3) become 

‘II, (n) m:: 4 (6) == w (a) ---I w (h) = 10’ (n) = w’ (6) =- 0 (4.4) 

The conditions corresponding to Conditions (1) - (6) are written as follows : 

1) The shell middle surface S* is a part of the sutface of revolution included 
between the parallels fi = a. and @ -= h; thehomeomorphic mapping of its meridian 
on the segment [a, b] is made by the function r (p) E C(s) (a, b); 

2) The following inequalities are satisfied : 

0 < ml0 -cl Ai, b, 1 Ri 1, Ir: < ntllt 0 < v < ‘!a 

3) The external stress resultants satisfy the requirements 

Fs E l&+ (n, b), F, E lW_” (a, b) 

Definition 4.1. Closure of the set of functions I$ EE CQ) (a, b) satisfying the 

boundary conditions (4.4) in the norm corresponding to the scalar product 

is called the space B. 
(2 

Definition 4.2. Closure of the set of functions w e c(s) (a, b) satisfying 
the boundary conditions (4.4) in the norm ~rres~nding to the scalar product 

(w. SW), L= $ I’ij (rcl) GyijA1AdP (4.6) 

is called the space S. a 

As in [4], the proof is carried out by the following lemma, 
Lemma 4.1. Let Conditions (1) and (2) (of Sect. 4) be satisfied. In this case, the 

spaces B and S agree, respectively, with the spaces W2’r (a, h) and llV.zc’ (a, (I), 
where the norms (4.5) and (4.6) are equivalent to the ordinary norms of the spaces 
IV,“’ (62, b) and I%‘? (n, b) ,respectively. 

Definition 4. 3. The pair of functions 11, E B. to E S satisfying the equa- 

tions (4.2),(4.3) for any pair of functions 69 E B, 6zu E S is called the generalized 
axisymmetric solution of the problem of equilibrium ot an elastic shell of revolution 
with rigidly fixed edge subjected to an axisymmetric load. 
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All the members of (4.2) and (4.3) have meaning in such a definition of the general- 
ized solution if Conditions (1) -(3) (of Sect. 4) are satisfied. 

Using Lemma 4.1, as well as the Riesz theorem about the representationofa continu- 

ous linear functional in Hilbert space, (4.3) can be written as an operator equation in 
the space S 

(w.Sw), = i (K,$.&L,)~ (4.7) 
i=o 

Here Ki are continuous homogeneous operators in the variable ‘Ic; from the space B 
in S; i is the degree of homogeneity of the operator Ki. It can be shown that K, is 

a completely continuous operator. 
Substituting the expression for the function u? from (4.7) into (4.2) and still using the 

Riesz theorem, we can arrive at the operator equation in the space B 

$ = G,ll (4.8) 

whose solution is equivalent to finding the generalized solution. 
The operator G, is the sum of two operators: G, = I,, + G,, where G, is a com- 

pletely continuous operator (the proof is carried out just as in [ti]), and the linear con- 

tinuous operator L, is given by the relationship 

t$j is obtained from ek[ by the substitution W = K,$. 
The following inequality 

1 < II 1 - th II < ml29 if O<t<l (4.9) 

results from the form of the operator L, . 
In order to use the Leray-Schauder principle [8] on the fixed points of operators, two 

lemmas are proved. 

Lemma 4.2. If the sequence gn -+ $,. converges weakly in the space B, the 

sequence w, -+ wa converges weakly in the space S and J,* (I#,, w,,) --+ 0, then 
$,, = 0. Here, the functional J,* (9, w) is obtained from the functional J4 (oj 
(Sect. 1) in an obvious manner. 

The proof is analogous to the proof of Lemma 2.1. 

Lemma 4.3. If Conditions (1) - (3) (Sect. 4) are satisfied, then the estimate 

0 ($, t) =L ($ - G$.$)B > ml@- (4.10) 

$ES(R), o,(t<1, m,,>O 

is valid on the spheres S (R), {$ E S (R): I/ + Ila = R}, of sufficiently large radius 
R 

Assuming P 

&0=x0==- -S$(h)A,(h)dh 
a 

in (4.3), and taking it into account, the expression @ ($, t) can be reduced to 
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The structure of the functional @ (t&, t) coincides with the structure of the correspond- 

ing functional @ (W, t) in [S] and the estimate (4.10) is proved analogously to [6 J, 
taking account of Lemma 4.2. 

The following inequality is evident 

The following lemma results from inequalities (4.9) - (4.11) . 
Lemma 4. 4. The estimate 

II 9 - t (1 - W -i ($9 IIn > ~tsm~-iR, 0 < t < 1 (4.12) 

is valid on the spheres ‘II, E s (R) of sufficiently large radius R if the Conditions 

(1) - (3) (Sect. 4) are satisfied, 
The operator (I - tL,)-’ C, is completely continuous for 0 <: t < 3 because of 

the estimate (4.9). It follows from the estimate (4-12) that the completely continuous 

vector field I - (I - L,)-iG, on spheres S (R) of sufficiently large radius X is 

homotopic 183 to the unit field I? from which the following theorem results. 
Theorem 4.1, Let Conditions (1) - (3) (Sect. 4) be satisfied. In this case there 

exists at least one generalized axi~mmetric solution, in the sense of Definition 4.3, of 
the problem of eq~librium of an elastic nonshallow shell of revolution with rigidly fixed 

edge subjected to axisymmetric loading. 
All generalized solutions are bounded 

//+/In 2..: R, jl U’ 11s -< m1.l 

where fl is a sufficiently large parameter defined in Lemma 4.3, where the rotation of 

the completely continuous vector field 1 - {I - L,)-lG, equals plus one on the spheres 

s W,), R, > R* 
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We consider a potential field in piecewise-nonhomogeneous media having a re- 

gular structure. The basic structure consists of a doubly-periodic system of groups 
of arbitrary heterogeneous anisotropic inclusions. The heterogeneous inclusions 

present in each of these groups possess the same.periodicity as the basic structure; 
they thus form a substructure. The problem of uniquely determining the field in 

this structure reduces to a determination of the solutions of a second order homo- 
geneous elliptic equation in each of the component domains, the solutions being 

required to satisfy coupling conditions on the interfaces of the media and also 
some additional relationships. This boundary-value problem reduces to a system 
of regular integral equations, which we prove to be solvable. Questions arise in 
connection with the modelling of piecewise-nonhomogeneous anisotropic regu- 

lar structures of a general type by means of homogeneous anisotropic media. As 
applications, we consider certain problems in hydromechanics and in the theory 
of anisotropic reinforced materials. 

1. Formulation of the baric problem, Let o,and O, (Imo, = 0, 
Imo, / o1 > 0) be the fundamental periods of the piecewise-nonhomogeneous medium, 
dividing it into a set of congruent fundamental cells ITI,, (for example, into a set of 

periodic parallelograms). Since we assume the structure of all congruent cells to be 
identical, it is sufficient to describe the structure of cell &,. The basic structure of 
the cell no0 consists of a group of distinct heterogeneous anisotropic inclusions Dj, 
bounded by the closed curves Lj (j = 1,2, . . . , r). The nonuniformity of each of the 
domains Dj gives rise to a cell substructure, i. e. the presence in each of these domains 
of its own anisotropic inclusions djq, bounded by the closed curves lj Q \J (’ = 1, 2, 
. . . . r; q =l.%, . . . . rj). We assume that the curves Lj and lj, are simple smooth 
mutually disjunct Liapunov curves. 

Let 

L = (j I,, 
i=l 

dj = (“i djq, 
&1 

Bj = Dj \ dj 

and let D be the unbounded domain occupaied by the basic homogeneous anisotropic 


